Neonatal 6-hydroxydopamine treatment eliminates cholinergic sympathetic innervation and induces sensory sprouting in rat sweat glands.
نویسندگان
چکیده
Previous studies of the development of cholinergic sympathetic innervation of sweat glands in rat footpads suggested that these terminals initially exhibit noradrenergic properties which are lost as the glands and their innervation mature. We have treated neonatal and adult rats with 6-hydroxydopamine (6-OHDA), a toxic congener of norepinephrine, and compared its effects on the cholinergic sympathetic innervation of sweat glands and the noradrenergic sympathetic innervation of the iris, salivary gland, and blood vessels. As reported by others, 6-OHDA treatment of neonates caused the destruction of noradrenergic fibers in the iris and salivary gland but did not affect other fibers projecting to these targets that stain for acetylcholinesterase (AChE). We found that 6-OHDA treatment of neonatal animals also caused the destruction of the sympathetic axons in immature sweat glands that possess catecholamine histofluorescence and tyrosine-hydroxylase-like immunoreactivity. Furthermore, when such animals were examined as adults, we found no AChE staining, vasoactive intestinal peptide (VIP)-like immunoreactivity, or characteristic sympathetic axonal varicosities. However, the denervated glands were invested by a plexus of sensory axons, some of which exhibited substance P-like immunoreactivity (SP-IR). An increase in the number of SP-IR fibers also occurred in the sympathetically denervated irides of these animals. Chronic treatment of neonates with guanethidine, another adrenergic sympathetic neurotoxin, resulted in similar loss of cholinergic sweat gland innervation. Treatment of adults rats with doses of 6-OHDA identical to those used to treat neonates caused the loss of noradrenergic fibers from the iris, salivary gland, and many blood vessels but did not noticeably affect AChE and VIP staining or axonal ultrastructure in the sweat glands. However, treatment with higher doses of 6-OHDA did cause significant axonal degeneration. The response of the sympathetic innervation of developing but not mature sweat glands to 6-OHDA provides evidence for a transition from noradrenergic to cholinergic phenotype during the development of sympathetic neurons in vivo similar to the transition observed in cell culture. The sprouting of sensory axons may be caused by NGF-like trophic influences present in some sympathetically denervated tissues.
منابع مشابه
Development of choline acetyltransferase (CAT) in the sympathetic innervation of rat sweat glands.
It has been postulated that the developing sympathetic innervation of rat eccrine sweat glands changes from adrenergic to cholinergic under the influence of its target. In agreement with previous evidence that the sympathetic innervation of adult rat sweat glands is cholinergic, we found that choline acetyltransferase (CAT)-immunoreactive nerve fibers are present in adult glands, and that gland...
متن کاملDifferential regulation of adrenergic receptor development by sympathetic innervation.
Rat sweat glands provide an interesting model system for a developmental study of adrenergic receptor expression because their sympathetic innervation undergoes a switch from a nonadrenergic to cholinergic and peptidergic phenotype. alpha 1B, alpha 2B, and beta 2 receptors are expressed in rat footpads; alpha 1 and beta 2 receptors are localized specifically to sweat glands, and alpha 2 recepto...
متن کاملDevelopmental expression of muscarinic cholinergic receptors and coupling to phospholipase C in rat sweat glands are independent of innervation.
During development, the innervation of rat sweat glands undergoes a striking change from noradrenergic to cholinergic function. The acquisition of secretory responsiveness by the glands is temporally correlated with the appearance of cholinergic properties. In addition, responsiveness fails to appear in the absence of innervation. To investigate the basis of the onset of functional transmission...
متن کاملParasympathetic, sympathetic, and sensory interactions in the iris: nerve growth factor regulates cholinergic ciliary ganglion innervation in vivo.
Interactions between peptidergic sensory nerves, noradrenergic sympathetic nerves, and cholinergic parasympathetic fibers were examined in the rat iris. The putative peptide neurotransmitter, substance P (SP), was used as an index of the trigeminal sensory innervation, tyrosine hydroxylase (TH) activity served to monitor the sympathetic fibers, and choline acetyltransferase (CAT) activity was u...
متن کاملDevelopmental changes in the transmitter properties of sympathetic neurons that innervate the periosteum.
During the development of sweat gland innervation, interactions with the target tissue induce a change from noradrenergic to cholinergic and peptidergic properties. To determine whether the change in neurotransmitter properties that occurs in the sweat gland innervation occurs more generally in sympathetic neurons, we identified a new target of cholinergic sympathetic neurons in rat, the perios...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 4 6 شماره
صفحات -
تاریخ انتشار 1984